Development of Copper-Ferrite Spinel Coating on AISI 430 Steel Used as Solid Oxide Fuel Cell

نویسندگان

چکیده مقاله:

The bare and pre-oxidized AISI 430 pieces were screen printed by copper ferrite spinel coatings. Good bonding between the coating and the substrate was achieved by the reactive sintering process of the reduced coating. The energy dispersive X-ray spectroscopy (EDS) analysis revealed that the scale is a double layer consisting of a chromia-rich subscale and an outer Cu/Fe-rich spinel. The results showed that the spinel protection layer not only significantly decreased the area specific resistance (ASR), but also inhibited the subscale growth by acting as a barrier to the inward diffusion of oxygen. ASRs of 19.7 and 32.5 mΩ.cm2, much lower than that of the bare substrate (153.4 mΩ.cm2), at 800 °C after 400 h oxidation were achieved for the bare and pre-oxidized copper ferrite spinel coated samples, respectively. Excellent, stable ASR (20.5 mΩ.cm2) was obtained with copper ferrite coating after 600 h of exposure at 800 °C. The high electrical conductivity of CuFe2O4 and its doping by Mn, the growth reduction of Cr2O3 oxide scale and the good coating to substrate adherence are proposed to be responsible for substantial improvement in electrical conductivity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co3O4 spinel protection coating for solid oxide fuel cell interconnect application

In the present study, electrophoretic deposition (EPD) method in different electric fields (30 – 300 V / cm) was used to apply Co3O4 spinel coating to SUS 430 as SOFC interconnect. The coated and uncoated specimens were pre-sintered in air at 800 and 900 °C for 3 h followed by cyclic oxidation at 700 and 800 °C for 500 h, respectively. X-ray diffraction analysis (XRD), Scanning Electron Microsc...

متن کامل

Copper Manganese Spinel Coating on a Ferritic Stainless Steel for SOFC Application

Nowadays, Because of daily reduction of fossil fuels and environmental problems caused by using them, Fuel Cells attracted a major attention as clean and efficient way of generating electrical power. Solid Oxide Fuel Cells (SOFCs) have many advantages to other fuel cell types. High working temperature of SOFCs caused serious challenges including high oxidation rate of interconnects, Spallation ...

متن کامل

Electrophoretic deposition of MnCr2O4 coating for solid oxide fuel cell metallic interconnects

In the present study, Mn - Cr spinel powder was synthesized through a solid state reaction. In the next step, the electrophoretic deposition (EPD) method was used to apply the MnCr2O4 spinel, as an oxidation-resistant layer, on SUS 430 stainless steel in a potential of 300 V/cm. The coated and uncoated samples were then pre-sintered in air at 900 °C for 3 h followed by cyclic oxidation at 800 °...

متن کامل

Thermal Growth Cu1.2Mn1.8O4 Spinel Coatings on Metal Interconnects for Solid Oxide Fuel Cell Applications

A novel cobalt-free Cu1.2Mn1.8O4 spinel coating is prepared and evaluated for the metal interconnect of solid oxide fuel cell. Mn-35Cu and Co-35Mn alloy coatings are deposited on 430 SS substrate and then in-situ oxidized in air at 750 ◦C for 100 h. XRD results confirm that Cu1.2Mn1.8O4 spinel with some Mn2O3 is formed, and the average thickness of the coating is 70–80 μm according to cross sec...

متن کامل

Catalytic coatings on steel for low-temperature propane prereforming to solid oxide fuel cell (SOFC) application.

Catalyst layers (4-20 microm) of rhodium (1 wt%) supported on alumina, titania, and ceria-zirconia (Ce(0.5)Zr(0.5)O(2)) were coated on stainless-steel corrugated sheets by dip-coating in very stable colloidal dispersions of nanoparticles in water. Catalytic performances were studied for low-temperature (< or = 500 degrees C) steam reforming of propane at a steam to carbon ratio equal to 3 and l...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 39  شماره 3

صفحات  127- 150

تاریخ انتشار 2020-12

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023